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EXECUTIVE SUMMARY 

This report details the research conducted under a Federal Aviation Administration (FAA) grant 
to study the processes by which a rotorcraft operator may implement usage monitoring and 
advanced usage-based fatigue lifing techniques within the framework of the guidance provided 
in FAA Advisory Circular 29-2C MG-15. The research focused specifically on the assessment of 
accuracies of regime recognition algorithms (RRAs) implemented in the Health and Usage 
Monitoring System (HUMS) and the impact of accuracies on the calculated fatigue lives of 
rotorcraft dynamic components. 

The end-to-end paradigm of structural life tracking of rotorcraft using HUMS relies on an 
accurate characterization of the operational flight regime by its RRA; therefore, the algorithms 
should be validated through a rigorous verification and validation process. Attaining the high 
level of accuracy requirement, such as the 97% described in the ADS-79D appendix B, is a 
challenge because of the limitations of the RRAs that are currently available. In addition, most 
algorithms are currently validated manually; therefore, the results are prone to being subjective. 
There are no known validation methodologies that will assess the accuracy of developed RRAs 
objectively and produce a quantitative measure of accuracies. 

This report describes a proposed methodology that assesses the accuracy of RRAs objectively 
and quantitatively using confusion matrix and correlation factors. An example RRA was 
validated by assessing its accuracy of more than 95% using extensive flight-load survey data and 
scripted HUMS test data to demonstrate a methodology for how the accuracy requirements are to 
be substantiated and validated. 

The report also discusses current accuracy requirements available in the rotorcraft community, 
pilot variability of regime recognition, and the impact of regime accuracy on the reliability of 
structural fatigue damage assessment. 
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1.  INTRODUCTION 

Helicopter Association International has contracted Technical Data Analysis, Inc. (TDA) to 
perform analysis under a Federal Aviation Administration (FAA) grant. The overall program 
objective is to determine a procedure by which a commercial helicopter operator might use 
Health and Usage Monitoring System (HUMS) technology to establish maintenance credits or 
revise maintenance intervals according to individualized usage. General guidance of this 
application process is provided in FAA Advisory Circular (AC) 29-2C MG 15 [1]. 

The primary research conducted under this grant was reported in detail by Hong et al. [2], 
including the review of traditional fatigue lifing methodologies for rotorcraft dynamic 
components, variations of structural life tracking paradigms using HUMS; onboard and  
post-flight regime recognition processes; the reliability of the HUMS data process as a whole; 
and the completeness and accuracy of the guidance presented in AC 29-2C MG-15. The research 
grant was extended to further study the accuracy assessment of regime recognition algorithms 
(RRAs), which play a central role in the rotorcraft structural life tracking paradigm using HUMS. 

The end-to-end paradigm of structural life tracking of rotorcraft using HUMS relies on an 
accurate characterization of the operational flight regime by its RRA to establish the basis for 
retirement time of aircraft components. The algorithms should be validated through a rigorous 
verification and validation (V&V) process using dedicated flight test data with sufficient flight 
conditions and time. Attaining the high level of accuracy requirement, such as the 97% described 
in the ADS-79D appendix B, is a challenge because of the limitations of the RRAs currently 
available. [3]. Currently, most algorithms are validated manually; therefore, the results are prone 
to being subjective. There are no known validation methodologies that will assess the accuracy 
of developed RRAs objectively and produce a quantitative measure of accuracies. 

This report describes a proposed methodology that assesses the accuracy of RRAs objectively 
and quantitatively using confusion matrix and correlation factors (CFs). An example RRA was 
validated by assessing its accuracy of more than 95% using extensive flight load survey data and 
scripted HUMS test data to demonstrate a methodology for how the accuracy requirements are to 
be substantiated and validated. 

The report also discusses current accuracy requirements available in the rotorcraft community, 
needs of standardization of regime definitions for commercial helicopters, pilot dependency of 
regime recognition, and impact of regime accuracy on the reliability of structural fatigue damage 
assessment. 

2.  APPROACH FOR ACCURACY ASSESSMENT OF REGIME RECOGNITION 

HUMS was introduced in the late 1980s in an effort to improve the reliability of structural life 
assessments for rotorcraft by accurately monitoring the operational condition of an aircraft or 
fleet of aircraft [4]. Various RRAs have been developed to identify flight regime profiles as a 
part of the HUMS usage monitoring process, and regime recognition is commonly carried out by 
a hierarchical process to identify flight profiles based on the recorded multiple flight parameters 
[5–7]. To establish RRA as the basis for the retirement time of aircraft components, algorithms 
should be validated through a rigorous V&V process using dedicated flight test data with 
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sufficient flight conditions and time. This study is focused on the methodology development to 
quantitatively assess the accuracy of existing RRAs in an effort to verify and validate the regime 
recognition codes. A new approach of regime accuracy assessment using the confusion matrix 
with CFs based on the regime load pattern matching scheme is described in this report. 

2.1  DIFFICULTIES IN REGIME ACCURACY ASSESSMENT 

Currently, there are few references that present formal accuracy requirements of HUMS RRAs. 
For military aircraft, ADS-79D appendix B provides detailed guidance for validation of RRAs, 
including their accuracy requirements: “… such as 97% or greater recognition of the actual flight 
regimes …” and “… any unrecognized regimes would introduce less than 0.5% under-prediction 
of fatigue damage fraction based on the design usage spectrum” [3]. Attaining this 97% accuracy 
requirement by an objective V&V process is challenging because of the limitations with the 
current RRAs. One of the major issues encountered is that multiple regimes are identified by the 
code for a supposedly single regime time. Toggling of similar regimes back and forth is also one 
of the commonly encountered problems [7]. It appears intuitive that more than one single regime 
is recognized during the changing flight conditions. This is particularly true for transient 
maneuvers, in which a time-sliced regime recognition logic is implemented even with the help of 
more advanced logic, such as a neural network and a hidden Markov model. 

The regime classification logics are generally based on certain criteria focused on the peak points 
of maneuvers; as a consequence, the entry and recovery phase regimes, which are highly 
transient maneuvers, are identified as similar regimes but slightly different from the target 
regimes. This does not mean that the regimes recognized during the entry and recovery phases 
are incorrect. Table 1 shows the typical multi-short regimes recognized from one symmetric pull 
up maneuver. Note that there are jumps in time increments in the table to show more regimes. 
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Table 1. Example of maneuver regime comparison 

time (sec) Regime_Name_Piloted Regime_Name_Recognized 
4153 SymmPullUp-LSDive Dive 
4154 SymmPullUp-LSDive Dive 
4155 SymmPullUp-LSDive SymmPullUp-LSDive 
4155 SymmPullUp-LSDive SymmPullUp-LSDive 
4156 SymmPullUp-LSDive SymmPullUp-LSDive 
4157 SymmPullUp-LSDive Descent 
4158 SymmPullUp-LSDive LevelFlight128 
4167 SymmPullUp-LSDive LevelFlight112 
4169 SymmPullUp-LSDive MaxContPwrClimb 
4174 SymmPullUp-LSDive MaxContPwrClimb 
4175 SymmPullUp-LSDive SymmPushOver 
4176 SymmPullUp-LSDive SymmPushOver 
4177 SymmPullUp-LSDive SymmPushOver 
4178 SymmPullUp-LSDive SymmPushOver 
4179 SymmPullUp-LSDive Descent 
4180 SymmPullUp-LSDive Descent 

 
As can be seen in this example case, if the recognized regimes from the output of the regime 
recognition codes are compared against the scripted regimes from the pilot cards strictly based 
on their regime names, the end result of accuracy will be unacceptably poor. It requires detailed 
physical explanations as to why the identified short-duration regimes are part of the target 
maneuver such that the regime recognition results are acceptable. This manual process makes the 
V&V of RRAs subjective and time-consuming. As a method to alleviate the stringent assessment 
with “black and white” criteria, the confusion matrix is studied with CFs using regime load 
pattern matching to establish an acceptable method that results in a more accurate and 
quantitative assessment of RRA. 
 
2.2  CONFUSION MATRIX FOR REGIME VALIDATION 

A confusion matrix, also known as an error matrix, is a specific table layout that allows for 
visualization of the performance of an algorithm. It is commonly used for the validation of 
algorithms in the artificial intelligence field. As an example, Goodrich engineers used the 
confusion matrix for the validation of their neural network-based RRA [8]. Table 2 shows a 
simple confusion matrix, in which each column represents the recognized regimes as instances in 
a predicted class and each row represents the scripted (piloted) regimes as instances in an actual 
class. As shown in table 2, with a few selected regimes, if strict accuracy criteria are applied, the 
portion of matching cases between the true values and predicted values in the diagonal (shaded) 
cells will get the validation credit, resulting in poor accuracy. See figure 1 for a 3-D plot of the 
example confusion matrix. 
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Table 2. Example confusion matrix of regime times 

Regime Name 
Row 

Labels 4 5 9 10 11 44 56 80 94 123 
Grand 
Total 

Accuracy 
(%) 

Descent 4 371 170 75 65 13 35 49 0 22 6 1528 24.3 
Dive 5 12 32 0 0 0 0 0 0 0 5 132 24.0 
HvrIGE 9 0 0 67 0 0 0 0 0 0 0 89 75.2 
HvrOGE 10 0 0 7 53 0 9 0 0 0 0 95 56.6 
IntPwrClimb 11 108 154 17 148 148 38 7 0 104 1 3534 4.2 
LTurn 44 16 0 0 5 0 109 8 0 0 0 302 36.1 
LTurnHvr 56 0 0 0 98 0 6 84 0 0 0 204 41.0 
RRollingPullup-Dive 80 53 7 0 0 0 62 0 11 109 12 1168 0.9 
RTurn 94 28 1 0 0 7 582 0 0 733 0 2546 28.8 
SymmPullUp 123 97 2 0 4 0 35 0 0 37 6 925 0.7 
 Grand 

Total 1310 775 1321 2021 271 1444 713 13 1413 78 32675 13.4 

 

 

Figure 1. Example 3-D plot of a confusion matrix for RRA accuracy 

2.3  REGIME LOAD PATTERNS AND CFS 

The off-diagonal terms generally represent short duration regimes identified during the entry and 
recovery phases of a regime. These off-diagonal terms do not signify incorrectly identified flight 
conditions. In most instances, they are correctly identified maneuver conditions. The difficulty is 
determining how to define their correctness based on a particular credit validation method. 
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To resolve this issue, a CF is conceived to define the validation credit for the off-diagonal terms 
based on the vibratory load pattern of a regime. Figure 2 shows typical vibratory load patterns on 
the helicopter pitch link for the symmetric pull out (SPO) maneuvers grouped into two level 
flight speeds (VH): 0.5 VH and 1.0 VH. In this plot, the vibratory loads are normalized by the 
maximum vibratory load observed from all the SPO conditions. Note that the three thick blue 
curves leveled as the same “0.5VH/100% SYM PO 2.0G” are from the same VH and vertical 
acceleration but different gross weight (GW) and altitude conditions, so their load pattern curves 
are similar. 

 

Figure 2. Example of vibratory pitch link load patterns 

Multiple regimes will be recognized by an RRA for a given maneuver duration and are known as 
sub-regimes. Each sub-regime will have its own maximum vibratory load level. It is intended to 
examine how well maneuver load patterns are matched to the presumed load patterns identified 
from the flight load survey. The similarity or goodness of load patterns between the flight load 
survey and the RRA would provide the CF of each recognized sub-regime. Figure 3 shows an 
example of the regime load patterns normalized by peak values of their SPO groups. The thick 
curves in the plot represent possible criteria for the pattern-matching boundaries and, in this case, 
+/-20% of the average values at each time slice are plotted. 
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Figure 3. Example of normalized load patterns of SPO with +/-20% pattern boundaries 

2.4  MULTIVARIABLE LINEAR REGRESSION ANALYSIS FOR LOAD PREDICTION 

The pattern matching to calculate the required CF requires obtaining the maneuver load pattern 
for the given regime by pilot cards. For this effort, the following five typical HUMS flight 
parameters are selected as input values for the Multivariable Linear Regression (MVLR) 
analysis: pitch and roll attitudes, rate of climb, Vertical Acceleration, and Never Exceeding 
Speed, together with the measured pitch link vibratory loads. The regime load vector is defined 
by the following equation: 

 Out(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 = 𝑤𝑤1𝑥𝑥[1] + 𝑤𝑤2𝑥𝑥[2]+. . . . 𝑤𝑤𝑚𝑚𝑥𝑥[𝐷𝐷] (1) 

where x[i] are the regression matrices, and the coefficient vector w at the maximum likelihood of 
the prediction is defined as [9]: 

 𝑤𝑤 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1(𝑋𝑋𝑇𝑇𝑌𝑌) (2) 

Figures 4 and 5 show the comparison of measured and predicted vibratory load patterns of highly 
transient maneuver regimes using the 5-parameter regression analysis. 
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Figure 4. Example comparison of measured and predicted pitch link vibratory loads – SPO 

 

Figure 5. Example comparison of measured and predicted pitch link vibratory  
loads – R turn 

As shown in figures 4 and 5, the vibratory load patterns are predicted with fair accuracy by the 
MVLR analysis from typical flight parameters. It is also possible to include more parameters in 
the regression analysis, such as engine torques, rates of pitch, and yaw, if they are needed for 
particular flight conditions. The prediction accuracy of the analysis depends on how the input 
data is grouped for similar flight conditions; in this study, the survey data was grouped based on 
their GW; density altitude; vertical acceleration or load factor; and speed. With this grouping of 
survey data, the load pattern prediction is good enough to be used for pattern matching in the 
RRA accuracy assessment. 
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2.5  REGIME LOAD PATTERN PREDICTION FROM HUMS DATA 

Once the required regression coefficient set for the five parameters of each regime is obtained 
from the flight load survey data, it can be used to predict load patterns from the same five 
parameters of each HUMS regime provided with the scripted HUMS data. Figure 6 shows the 
predicted vibratory load pattern plotted with the five flight parameters from the HUMS in 
different colored and dashed curves. 

 

Figure 6. Example of predicted pitch link vibratory loads for a 45-degree R turn 

In the figure, the secondary vertical axis on the right side represents the regime identification 
(ID) numbers, and the short regimes are plotted in thin brown straight lines as a reference. It also 
shows that the regression coefficient set responds to the signal spike at approximately 12 seconds 
elapsed time. Note that, in figure 6, the load levels of the sub-regimes identified by the RRA are 
also plotted in thick blue lines, which are explained in section 2.6. 

2.6  REGIME LOAD PATTERNS FOR RRAS 

Once multiple regimes are recognized by RRAs, vibratory load levels can be obtained from 
supplied fatigue damage tables (not presented in this report). To be more accurate, a 50% 
damage level from the Weibull distribution curve may be used to represent the load level of each 
regime in place of the load level in the damage table, which is typically selected at the 95% level 
for conservatism [10]. 

Figure 7 shows a comparison of the two load patterns: the predicted loads by the regression 
coefficients in a black curve, and the assigned loads for each sub-regime from the RRA in blue 
lines. Note that each load pattern is normalized by its peak load to compare patterns. The CF is 
obtained at each time point by examining the two load patterns and is used as a measure of credit 
validation for the RRA. 
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Figure 7. Example of predicted vibratory loads with regime loads from RRA for a  
45-degree R turn 

2.7  CALCULATION OF CFS 

Using comparisons of the two normalized load patterns, the CF at each time point can be 
calculated from the distance between the two patterns at each time point. Because the sub-regime 
loads for the RRA are constant during their durations and assigned by the maximum vibratory 
load levels measured in the flight load survey, it is appropriate to use this local maximum for the 
predicted load patterns of the same regime durations. 

Figure 8 shows the two load patterns with their constant load levels at each sub-regime. Note the 
upper and lower criteria boundaries for the pattern matching shown in red dashed lines. 

 

Figure 8. Example of predicted local maximum vibratory loads and regime  
loads from RRA 
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The predicted local maximum load levels are unexpectedly high between 12 and 22 seconds for 
the Level Flight 96 with regime ID 23. This is due to the pitch attitude signal spike, as shown in 
figures 6 and 7. These types of erroneous load levels will result in an incorrect accuracy 
assessment of the RRA. 

The black line in figure 9 shows the differences in vibratory loads between predicted and the 
RRA. This allows for the calculation of the CFs at each time point by examining the magnitude 
of the load differences against the boundaries. 

 

Figure 9. Example of load differences between predicted loads and regime loads from RRA 

2.8  LOGIC FOR CFS 

Pattern matching is one of the methodologies for pattern recognition. In this study, the following 
simple logic is used to determine the required CF using the difference of load (ΔLoad, ΔL) 
between the predicted and RRA load patterns: 

 If ΔLoad is within the boundaries, CF = 1.0, (2) 

If ΔLoad is outside the boundaries, CF = (1 - ΔL)/(1 – ΔLbnd) (3) 
 
where ΔLbnd is the load level of pattern boundaries. 
 
3.  PRELIMINARY RESULT OF ACCURACY ASSESSMENT 

A computer program was developed to implement the accuracy assessment methodology of RRA 
explained in section 2. Figure 10 shows a block diagram for this accuracy assessment process. 
By following this process, TDA’s regime recognition codes were evaluated to demonstrate the 
methodology. A substantial amount of flight load survey data and scripted HUMS data were 
used during the development of the assessment process and for the final evaluation of RRA 
accuracy. 
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Figure 10. Block diagram for the accuracy assessment of RRAs 

In this methodology demonstration study, a +/-10% was discretionally selected as the upper and 
lower pattern boundaries based on the observation of load pattern scatter for highly transient 
maneuvers, as shown in figures 2 and 3. Table 3 shows the confusion matrix for a few selected 
regimes with their adjusted regime recognition accuracies. Figure 11 shows the confusion matrix 
of regime accuracies in which a uniform distribution of accuracies across the entire matrix area 
can be observed. Table 3 shows that there are exact matches of regimes on the diagonal (shaded) 
cells and the off-diagonal cells that have high accuracy validation credits by the assessment 
methodology described in this report. 

Table 3. Example confusion matrix of regime times 

Regime Name 
Row 

Labels 4 5 10 11 26 44 94 123 128 
Accuracy 

(%) 
Descent 4 371 167 62 9 1 31 23 6 1 84.8 
Dive 5 8 32      5 1 82.7 
HvrOGE 10   53   7    92.9 
IntPwrClimb 11 94 134 141 148 1 35 99 1 4 56.5 
LevelFlight 14 23   49 1 28 13  0 94.9 
LRollingPullUp 26 45 18   13 122  7 9 69.9 
LTurn 44 29  4 7 10 579   0 91.3 
RTurn 94 14 0 0 0   1161  2 95.8 
SymmPullUp 123 72 2 2  12 32 35 6 5 63.1 
SymmPushOver 128 110 33  8  54 9 15 31 85.2 
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Figure 11. Example 3-D plot of confusion matrix for RRA accuracy 

More than 90% accuracy was assessed with a +/-10% credit boundary for the entire scripted 
regime database of more than 1000 maneuver regimes with 30,000 seconds of accumulated 
regime times. 

Table 4 shows the summary of accuracies for different maneuver groups and credit boundary 
sizes. 

Table 4. Comparison of assessed accuracies 

Maneuver Group 

Accuracy (%) 
Credit Boundary (+/-) 
10% 15% 20% 

Steady 91.7 93.3 94.5 
Transient 89.9 91.5 93.0 
Ground/TO/Lndg 87.3 88.3 90.0 
Overall 90.1 91.7 93.0 

 
It was found that the HUMS data and the available flight survey data include various types of 
errors, such as signal noise, missing parameter data, and incorrect regime names. In addition, 
many of the regimes have long durations of more than 50 seconds even for transient maneuvers, 
and sometimes with repeated maneuvers. Regime data with a long duration and a mixture of 
steady and transient maneuver conditions reduces the accuracy of regression analysis. 
Eliminating some or all of these errors will improve the overall accuracy. It is also conceivable 
that a tailored credit boundary scheme for different maneuver groups can be applied for more 
accurate assessment. 
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4.  IMPROVEMENT OF REGIME ACCURACY ASSESSMENT 

As discussed in section 3, it was observed that there are a few areas that require additional 
measures to obtain improved accuracies. Three measures, among others, are incorporated in the 
process and discussed in sections 4.1–4.3. 

4.1  ERRONEOUS DATA SPIKES 

The current HUMS data available for the study included numerous flight records with erroneous 
data spikes, as shown in figure 7. It was observed that the vertical acceleration is prone to this 
type of anomaly, which results in the erroneous accuracy assessment due to the inaccurate 
reference peak load level for the sub-regime time, as shown in figure 8. This type of data spike 
was removed by manually smoothing out the data. Figure 12 shows the corrected reference load 
level between 12 and 22 seconds highlighted in the dashed green circle after the data spike was 
removed. 

 

Figure 12. Improved local maximum vibratory loads and accuracy criteria boundaries 

4.2  MINIMUM PATTERN CRITERIA BOUNDARIES 

During the preliminary accuracy assessment, it was observed that the load pattern criteria 
boundaries, which are proportional to the local maximum load levels, could become small when 
the actual load levels become small. This could create a situation of unreasonably tight accuracy 
criteria. Therefore, +/-5% of maximum predicted regime load was assigned as the minimum 
level of accuracy criteria boundary during the regime time. Figure 12 shows an example of 
improved upper- and lower-criteria boundaries highlighted in the dashed orange circle in the  
22–30 seconds time interval, and figure 8 shows the tight boundaries in the same elapsed time 
period before the change was made. 

4.3  NEW LOAD PATTERN ALIGNMENT OPTION 

To compare the two load patterns (one from the predicted loads using MVLR analysis as the 
reference and the other from the RRA output), they must be aligned (i.e., normalized by the 
maximum regime load, as described in section 2.7). It was observed that for the flight regimes of 
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RRAs in which the regime loads do not change significantly during their duration, there could 
still be a sudden increase of load levels in short durations due to the recognized regimes that 
have high load levels assigned. As shown in figure 13, aligning by the maximum load creates a 
situation in which the loads of the two sources are not matching well in the majority of the 
regime durations while they are close to each other. To avoid this type of unwanted situation, a 
second option of load pattern alignment is implemented in which the average regime load, in 
place of the maximum load, is used to normalize the regime loads. Figure 14 shows that the two 
regime load patterns match closely when they are normalized by the average regime load. 

 

Figure 13. Comparison of two load patterns normalized by the maximum regime load 

 

Figure 14. Comparison of two load patterns normalized by the average regime load 

4.4  SUMMARY OF REVISED ACCURACY ASSESSMENT RESULT 

The three improvement measures described in sections 4.1–4.3 were incorporated in the accuracy 
assessment process of RRA, and the HUMS output was reevaluated to assess its accuracy. As 
shown in table 5, the reassessed overall accuracies increased approximately 3% in four different 
load pattern criteria, or credit boundaries. More detailed accuracies for selected regimes are 
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shown in table 6 and figure 15, in which more than 95% accuracies were assessed for all regimes 
except the last two regimes of “Power Dive” and “Steady Auto.” 

Table 5. Comparison of reassessed overall accuracies for various credit boundaries 

Maneuver Group 

Accuracy (%) 
Credit Boundary (+/-) 

5% 10% 15% 20% 
Steady 92.4 93.8 95.3 96.6 
Transient 92.3 93.6 95.0 96.2 
Ground/Takeoff/Landing 95.0 95.9 96.9 97.7 
Grand Total 92.5 93.8 95.2 96.4 

 
Table 6. Comparison of reassessed regime accuracies for various credit boundaries 

Maneuver Group 

Accuracy (%) 
Credit Boundary (+/-) 

5% 10% 15% 20% 
Hover 95.9 97.3 98.4 98.8 
Level Flight 90% V MAX 97.4 97.8 98.3 98.6 
Max. Cont. Power Climb 92.7 94.0 95.3 96.5 
30° AOB Left Turn 94.2 95.1 96.2 97.2 
30° AOB Right Turn 94.9 95.6 96.4 97.1 
45° AOB Left Turn 94.4 96.2 97.5 97.9 
45° AOB Right Turn 94.7 97.2 98.9 99.5 
2.0g Pullout 91.9 93.1 94.6 96.0 
1.5g Pullout 92.5 93.7 95.3 96.7 
Power Dive 82.0 84.1 86.6 89.0 
Steady Auto 82.9 85.4 87.8 89.5 
Grand Total 92.5 93.8 95.2 96.4 
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Figure 15. Comparison of reassessed regime accuracies for various credit boundaries 

Based on these newly assessed accuracies, it is concluded that a +/-15% credit boundary is a 
reasonable choice as the load pattern criteria boundary. It is expected that this level of credit 
boundary will produce a minimum of 95% accuracy from the RRA output. 

5.  PILOT VARIABILITY OF REGIME RECONGNITION 

Pilot variability is an area of concern with respect to using HUMS regime  
recognitions—specifically, the concern about whether the pilot’s individual techniques affect the 
damage data accumulated. The U.S. Army Research Laboratory (ARL) studied the pilot 
variability using the Analysis of Variance to analyze the variance that occurs when there are 
various pilots following the same flight regimes and found that the pilot variability has no impact 
on the effectiveness of the RRA at the 95% confidence level [11]. A limited amount of the same 
flight test data used in the ARL study was made available to TDA to investigate the pilot 
variability. The results are summarized in section 5.1. 

Considering that the previous ARL study already concluded that there is no visible variability 
between pilots, the current study was focused on the qualitative comparison of two pilots: the 
pilot (pilot #1) and the copilot (pilot #2). The study was also limited to the left turn maneuver 
with its meaningful number of data points available from the given data files. 
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5.1  FLIGHT DURATIONS OF LEFT TURN MANEUVERS 

The flight test data shows that there are some differences in regime flight times between the two 
pilots: the average regime duration to complete the left turn maneuver is 18.6 seconds for pilot 
#1 and 22.4 seconds for pilot #2. Figure 16 shows the comparison of regime durations to 
complete the targeted left turns between the two pilots. In one case, pilot #2 took 40 seconds to 
complete the maximum 37-degree left turn maneuver. The figure also shows that the achieved 
bank angles for pilot #1 are concentrated at the targeted 30-degree and 45-degree turn 
maneuvers, whereas those of pilot #2 are spread out. 

  

Figure 16. Comparison of left turn durations between the two pilots 

From these two observations (longer regime durations and more spread out bank angles), it 
would appear that pilot #2 might have less experiences in handling these high turn maneuvers. 
Further detailed investigations of the flight test data reinforces this speculation; figures 17 and 18 
show a comparison of the time histories of major flight parameters between the two pilots. High 
degrees of fluctuation in pitch, roll, and yaw rates can be seen from the curves for pilot #2 in 
figures 17 and 18, indicating rougher maneuvers. 
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Figure 17. Flight parameter comparison of 30-degree left turns between the two pilots 
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Figure 18. Flight parameter comparison of 45-degree left turns between the two pilots 

5.2  COMPARISON OF MIN/MAX FLIGHT MANEUVER PARAMETERS 

Pilot #1 may be a more experienced pilot such that he could control the turn maneuvers more 
smoothly compared to pilot #2 (the copilot). The higher fluctuations shown in figures 17 and 18 
for pilot #2 could result in more fragmented regime recognitions and therefore could impact the 
results of the regime recognition. Such an impact of pilot variability due to the fluctuation of 
flight parameters may not be clearly identified by statistically analyzing the average or min/max 
values of flight parameters as described in the ARL report [11]. As shown in Figure 19, the 
min/max values of major flight maneuver parameters do not exhibit visible differences between 
the two pilots. Unfortunately, this observation could not be confirmed because the RRA that ran 
with this flight test data was not available to TDA. 
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Figure 19. Comparison of min/max flight parameters between the two pilots 

6.  IMPACT OF REGIME RECOGNITION ACCURACY ON THE COMPONENT FATIGUE 
LIFE 

One of the primary goals of using HUMS is to achieve more accurate structural life tracking of 
critical safety items of rotorcraft. Therefore, it is important to understand how the accuracy level 
of RRAs in the end-to-end paradigm of structural life tracking using HUMS will affect the 
assessed fatigue lives of rotorcraft structural components. In this section, the impact of regime 
recognition accuracy on the fatigue lives of dynamic components is described. 

6.1  USE OF COMPOSITE WORST CASE SPECTRUM AS A REFERENCE USAGE 
SPECTRUM 

It is common that scripted HUMS flight test data are highly skewed to the transient maneuver 
regimes because they get more attention during the flight testing for their higher-damaging flight 
conditions. Figure 20 shows the comparison of regime times and occurrences between the usage 
spectrum of the example scripted HUMS data and the Composite Worst Case (CWC) usage 
spectrum. It shows that the scripted HUMS data includes relatively small amounts of times for 
steady flight conditions, such as hover and level flights, and much larger times for  
high-maneuver conditions, such as turns and pull outs. In this example case, transient maneuver 
regimes take approximately 60.7% of the total HUMS flight time compared to the 16.5% of the 
flight time for the CWC usage spectrum. 
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Figure 20. Comparison of regime times and occurrences 

To study the impact of regime recognition accuracy on the fatigue lives of components, it is 
important to establish a standard reference usage spectrum such that the component lives can be 
assessed and compared for different levels of regime accuracies. Considering that the CWC 
usage spectrum is commonly used in establishing the baseline fatigue life of a component during 
the aircraft development, the CWC usage spectrum is chosen to study the impact of regime 
recognition accuracy levels. By doing this, it is assumed that the accuracy of each regime 
calculated earlier remains unchanged for different regime times. 

6.2  RECOMMENDED ACCURACY REQUIREMENT FOR REGIME RECOGNITION 

As explained in section 6.1, the fatigue life of a component can be calculated using the CWC 
spectrum as a reference spectrum at different levels of the regime accuracies. Figure 21 shows an 
example trend of fatigue life for a main rotor rotating swashplate for various levels of regime 
accuracies. The lives along the upper boundary curve are calculated by subtracting the margin of 
regime error from the reference usage (best case scenario), whereas the lives on the lower 
boundary are calculated by adding the regime error to the mean usage (worst case scenario). 
Figure 22 shows the component lives normalized by the CWC life. 

Based on figures 21 and 22, it is conceivable that the 95% regime accuracy would provide a 
minimum accuracy of approximately 90% for the component life calculated, as denoted by the 
dashed orange line (see figure 22). 
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Figure 21. Example range of main rotor rotating swashplate life vs. regime accuracy 

 

Figure 22. Example % range of main rotor rotating swashplate life vs. regime accuracy 

Figures 23 and 24 also show similar trends of fatigue life for a main rotor pitch control horn, in 
which the 95% regime accuracy would provide a minimum accuracy of 88% for the component 
life. Note that the pitch control horn has a higher damage rate due to the large scatter in its 
fatigue test data, causing the higher uncertainty [10]. 
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Figure 23. Example range of main rotor pitch control horn life vs. regime accuracy 

 

Figure 24. Example % range of main rotor pitch control horn life vs. regime accuracy 

Considering that the component lives with these minimum accuracies are conservative ones, it is 
recommended to use the 95% regime recognition accuracy as a requirement in practice with the 
expected impact of regime accuracies of approximately 10% on the component life. 

7.  CONCLUSIONS 

An accuracy assessment methodology for the verification and validation of Health and Usage 
Monitoring System (HUMS) regime recognition algorithms (RRAs) is developed using a 
confusion matrix with control factors (CFs) based on the comparison results of regime vibratory 
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load patterns. More than 90% of regime recognition accuracies were assessed for the evaluated 
regime recognition code. Pilot variability and the impact of regime accuracy on the component 
fatigue life were studied. The following are highlights and conclusions of the study: 

• The scripted regimes by pilot cards and the recognized regimes by an RRA were 
compared using the confusion matrix to assess the accuracy of the RRA 

• CFs were calculated by using a pattern matching of regime vibratory loads 

• A multivariable regression analysis was used with five typical flight parameters to predict 
regime vibratory load patterns 

• More than 90% accuracy was observed for the regime recognition code evaluated with 
various pattern-matching criteria 

• More than 95% accuracy was observed using a +/-15% pattern-matching criterion, and 
this criterion is recommended in practice 

• 95% is recommended as a requirement of regime accuracy for a minimum accuracy of 
90% for a component life using HUMS 
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